Effect of newly refined hypocenter locations on the seismic activity recorded during the 2016 Kumamoto Earthquake sequence
نویسندگان
چکیده
We present the results of relocating 17,544 hypocenters determined from data recorded during the 2016 Kumamoto Earthquake sequence, during the interval between April 14, 2016, and August 31, 2016. For this, we used a doubledifference relocation method to constrain high-resolution hypocenter locations by cross-correlation differential times as well as the NIED Hi-net catalog differential times. The sequence included two large events (on 14 April: MJMA6.5 and on 16 April: MJMA7.3) that occurred in a complicated region where the Hinagu and Futagawa faults meet. By comparing these high-resolution earthquake locations in three different periods [(P1) between 2001 and 2012; (P2) between MJMA6.5 and MJMA7.3; and (P3) between MJMA7.3 and August 31, 2016], we present the significant seismicity after the mainshock relative to the background seismicity. Events during the Kumamoto Earthquake sequence occurred generally within the same sites of known faults and background seismicity. For an example, the seismicity during period P2 formed a sharp linear shape along the northern part of the Hinagu fault for about 20 km. A series of linear seismicity events occurred during period P3 along the Futagawa fault to the east (for about 28 km), in the northern part of the Aso caldera, and in the Oita region around the Beppu–Haneyama fault zone. These events also extended to the midand southern parts of the Hinagu fault zone and were shaped only after the M7.3 event. Moreover, high-resolution hypocenter locations also allowed us to identify some clusters of events that occurred in regions where background seismicity has not been confirmed. For instance, activity on the northwestern edge of the Aso caldera and in small areas within the Beppu–Haneyama fault zone became apparent with new seismic activity. We also demonstrate herein the absence of seismicity between the northeast extension of the Futagawa fault zone and the Aso caldera region, which became clearly shown after the M7.3 event. This low-seismicity region is located at the boundary of the lowand high-velocity structures and different focal mechanisms, but is also close to the maximum slip area of the
منابع مشابه
An investigation into the remote triggering of the Oita earthquake by the 2016 Mw 7.0 Kumamoto earthquake using full wavefield simulation
High-amplitude seismic waves from the Mw 7.0 Kumamoto earthquake of April 16, 2016, triggered another large earthquake 80 km to the NE roughly 30 s later. The source was located at shallow depths beneath the Yufuin geothermal field, Oita Prefecture, Japan, and the event magnitude was approximately 5.9. To date, this is one of the clearest known examples of a remotely triggered large earthquake....
متن کاملSpatial and temporal seismic velocity changes on Kyushu Island during the 2016 Kumamoto earthquake
Monitoring of earthquake faults and volcanoes contributes to our understanding of their dynamic mechanisms and to our ability to predict future earthquakes and volcanic activity. We report here on spatial and temporal variations of seismic velocity around the seismogenic fault of the 2016 Kumamoto earthquake [moment magnitude (Mw) 7.0] based on ambient seismic noise. Seismic velocity near the r...
متن کاملGeophysical imaging of subsurface structures in volcanic area by seismic attenuation profiling
Geophysical imaging by using attenuation property of multichannel seismic reflection data was tested to map spatial variation of physical properties of rocks in a volcanic area. The study area is located around Miyakejima volcanic island, where an intensive earthquake swarm was observed associated with 2000 Miyakejima eruption. Seismic reflection survey was conducted five months after the swarm...
متن کاملRemote triggering of seismicity at Japanese volcanoes following the 2016 M7.3 Kumamoto earthquake
The MJMA7.3 Kumamoto earthquake occurred on April 16, 2016, in the western part of Kyushu, at a depth of 12 km, on an active strike-slip fault. Here, we report on a relatively widespread activation of small remote earthquakes, which occurred as far as Hokkaido, detected by analyzing the continuous waveform data recorded at seismic stations all over Japan. Such relatively widespread remote seism...
متن کاملEarthquakes in Oita triggered by the 2016 M7.3 Kumamoto earthquake
During the passage of the seismic waves from the M7.3 Kumamoto, Kyushu, earthquake on April 16, 2016, a M5.7 [semiofficial value estimated by the Japan Meteorological Agency (JMA)] event occurred in the central part of Oita prefecture, approximately 80 km far away from the mainshock. Although there have been a number of reports that M < 5 earthquakes were remotely triggered during the passage o...
متن کامل